请教HN:构建一款服务于财富500强企业的RAG聊天机器人的经验教训(10-30秒处理5000万条记录)
在过去的一年半时间里,我为一家财富500强制造公司构建了一个检索增强生成(Retrieval Augmented Generation,RAG)聊天机器人,整合了超过5000万条记录,跨越了十几个数据库。尽管数据规模庞大,但该系统能在10到30秒内返回相关信息,目前在公司内部已达到90%的五星级用户好评。
经过大量的尝试和错误——嵌入庞大的数据集、混合向量+文本搜索、处理并发以及避免幻觉现象,我决定将这一切记录在一本书中。这本书很快就会在Manning.com的早期访问(Early Access)上线(3月27日)。如果你正在处理大规模的RAG项目,或者对我的方法有任何疑问(挑战、成功经验),请随时提问。我很乐意分享经验教训、配置思路或者注意事项,以便你能避免我在过程中遇到的陷阱。
查看原文
I’ve spent the past year and a half constructing a Retrieval Augmented Generation (RAG) chatbot for a Fortune 500 manufacturing company, integrating over 50 million records across a dozen databases. Despite that scale, the system can return relevant info in 10–30 seconds, and it’s now at 90% five-star user approval internally.<p>After tons of trial and error—embedding huge datasets, mixing vector + text search, handling concurrency, and dodging hallucinations, I decided to document it all in a book. It’ll be live on Manning.com’s Early Access soon (March 27th). If you’re tackling large-scale RAG or have questions about my approach (the struggles, the successes), feel free to ask. I’m happy to share lessons, config ideas, or gotchas so you can avoid the pitfalls I hit along the way.