重新思考数据架构:可重放性、解耦、持续改进

2作者: odinellefsen10 天前原帖
你好,我在一家名为Flowcore的新公司工作,我们认为我们找到了一个方法,可以让数据系统变得不那么复杂、可怕,并且更容易为AI驱动的查询所用。我很想听听你的意见,我们也有相关文档。 <p>什么是Flowcore?</p> Flowcore是一个平台,可以实时捕捉所有数据事件,并将其与您的主数据库保持独立。与其将数据锁定在固定的表格和严格的模式中,Flowcore为您提供一个事件历史,随着系统的发展而保持灵活性。您仍然拥有自己的数据库,但Flowcore成为您塑造、改进和重新思考数据的地方,没有任何限制。 <p>为什么使用Flowcore?</p> 使用Flowcore,您的数据架构就像设计良好的代码。每个流程都监听您的事件,转换它们,并将其发送到需要去的地方——与您的数据库或下游系统完全解耦。Flowcore采用了一种特殊的事件源方法,并使用冷存储来保留您数据的完整历史,因此当您更改流程逻辑时,无需重写脚本或进行风险迁移——您只需更新流程并重放事件历史,轻松一键即可。这意味着您不仅可以快速修复错误,还可以随着时间的推移不断改善您的自动化。就像将SOLID原则应用于您的数据:安全可变、易于扩展,并且自然具有弹性。而且,您会发现,当数据与数据库解耦,不再是唯一的真实来源时,数据会显得不那么可怕。 <p>但真正释放力量的是当您将AI引入其中。使用Flowcore MCP Server,您只需用简单的语言提问,就可以探索和理解您的数据。由于Flowcore将所有数据集中在一个地方,而不是分散在不相连的系统中,您可以立即从混乱或复杂的数据中获得洞察。最棒的是?您不必从第一天起就设计完美的模式。Flowcore的可重放性意味着您可以在后期确定自己关心的内容,几分钟内创建一个新表,并将历史数据直接重放到其中。因此,当您接入AI时,您不再受限于当时拥有的数据——您可以不断地将数据塑造成AI所需的形式,以回答您最抽象的问题。 <p>我们最喜欢的功能是可重放性。由于您所有的数据更改都已在事件源中捕获,例如删除、更新或创建条目,您只需按一下按钮,就可以推导出全新的读取模型、填补缺失数据或将改进的逻辑应用于整个历史数据集。无论您是意识到忘记了某个字段、需要为AI使用丰富数据,还是只是想重新塑造数据的存储方式,您都不必从头开始。您只需更新流程并通过它重放事件。 <p>以下是文档链接:https://docs.flowcore.io 和网站:https://flowcore.com</p>
查看原文
Hey, I work at a new company called Flowcore, and we think we&#x27;ve found a way to make data systems less tightly wound, scary, and a lot more accessible for AI-powered querying. I&#x27;d love to get your opinion. we have documentation too.<p>What is Flowcore?<p>Flowcore is a platform that captures all your data events as they happen, and keeps them independent from your main database. Instead of locking your data into fixed tables and rigid schemas, Flowcore gives you an event history that stays flexible as your systems evolve. You still have your database, but Flowcore becomes the place where you shape, improve, and rethink your data without limitations.<p>Why use Flowcore?<p>With Flowcore, your data architecture works like well-designed code. Each flow listens to your events, transforms them, and sends them where they need to go — fully decoupled from your database or downstream systems. Flowcore uses a special event sourcing approach and also cold-storage to retain a complete history of your data, so when you change your flow logic, you don’t have to rewrite scripts or run risky migrations — you just update your flow and replay your event history, at the click of a button. That means you’re not only fixing mistakes quickly, you’re continuously improving your automations over time. It’s like applying SOLID principles to your data: safe to change, easy to extend, and naturally resilient. And you&#x27;ll find, your data feels a lot less scary when it’s decoupled from your database as the single source of truth.<p>But what really unlocks the power is when you bring AI into the mix. With Flowcore MCP Server, you explore and understand your data just by asking questions in plain language. And because Flowcore keeps all your data in one place, not scattered across disconnected systems, you can instantly gain insights even from messy or complex data. The best part? You don’t have to design the perfect schema from day one. Flowcore’s replayability means you can figure out what you care about later, spin up a new table in minutes, and replay your history straight into it. So when you plug in AI, you’re not limited to whatever data you had at the time — you can continuously shape your data into exactly what your AI needs to answer even your most abstract questions.<p>So the feature that we like the most is the replayability. Seeing as all of your data changes have been captured in the event source like deleting, updating, or creating an entry you can, at the push of a button, derive entirely new read models, backfill missing data, or apply improved logic to your entire historical dataset. Whether you realize you forgot a field, need to enrich your data for AI use, or simply want to reshape how your data is stored, you don’t have to start from scratch. You just update your flow and replay your events through it.<p>here are the documentation https:&#x2F;&#x2F;docs.flowcore.io and the website https:&#x2F;&#x2F;flowcore.com