问HN:对大型语言模型(LLMs)表现出的礼貌是良好的训练数据,还是仅仅是昂贵的噪音?

2作者: scottfalconer5 天前原帖
萨姆·阿尔特曼最近表示,用户对ChatGPT的礼貌行为让OpenAI花费了“数千万美元”,但这“花得值得”。 通常的观点是,强化学习与人类反馈(RLHF)依赖于明确的反馈(点赞/点踩),而礼貌的回应只是增加计算成本的噪音。 但像“谢谢!”或“不是,这个错了”这样的自然回复,是否可能比按钮点击提供更丰富、更频繁的隐性反馈信号?人们可能更常给出这种反馈(至少我就是)。这也反映了我们作为人类自然提供反馈的方式。 模型提供者是否可以挖掘这些聊天记录,以获取真实的用户情感,从而指导未来的RLHF,进而证明这笔费用的合理性?而这种“社交化”是否对未来需要对话细微差别的自主AI至关重要? 在HN上的问题: 你知道有人将这种隐性情感作为核心对齐信号吗? 嘈杂的文本情感与干净的按钮点击在训练中价值如何? 潜在的训练价值是否抵消了提到的计算成本? 我们是否低估了以这种方式“社交化”大型语言模型的价值? 你认为阿尔特曼所说的“花得值得”是什么意思?这仅仅关乎用户体验、宝贵的训练数据,还是完全其他的东西?
查看原文
Sam Altman recently said user politeness towards ChatGPT costs OpenAI &quot;tens of millions&quot; but is &quot;money well spent.&quot;<p>The standard view is that RLHF relies on explicit feedback (thumbs up&#x2F;down), and polite tokens are just noise adding compute cost.<p>But could natural replies like &quot;thanks!&quot; or &quot;no, that&#x27;s wrong&quot; be a richer, more frequent implicit feedback signal than button clicks? People likely give that sort of feedback more often (at least I do.) It also mirrors how we naturally provide feedback as humans.<p>Could model providers be mining these chat logs for genuine user sentiment to guide future RLHF, justifying the cost? And might this &quot;socialization&quot; be crucial for future agentic AI needing conversational nuance?<p>Questions for HN:<p>Do you know of anyone using this implicit sentiment as a core alignment signal?<p>How valuable is noisy text sentiment vs. clean button clicks for training?<p>Does potential training value offset the compute cost mentioned?<p>Are we underestimating the value of &#x27;socializing&#x27; LLMs this way?<p>What do you think Altman meant by &quot;well spent&quot;? Is it purely about user experience, valuable training data, something else entirely?