问HN:2025年自托管照片库的技术栈是什么,如何结合本地人工智能?

28作者: jamesxv7大约 22 小时前原帖
首先,这纯粹是我个人的学习项目,旨在结合我三种热情:摄影、软件工程以及家庭记忆。我拥有大量的家庭照片,想要构建一个互动体验,以便像谷歌或苹果的照片功能那样探索它们。 我的目标是创建一个具有智能搜索功能的系统,其中一个最重要的要求是它必须完全运行在我的本地硬件上。隐私至关重要,但主要驱动力是自己构建它的挑战和乐趣(显然也是一种学习)。 我所追求的关键功能包括: - 自动识别和标记家庭成员(本地人脸识别)。 - 为每张照片生成描述性标题。 - 自然语言搜索(例如,“给我看看去年夏天我们在卢基略海滩的照片”)。 我已经向人工智能工具请求了一个高层次的项目计划,它们提供了一个可靠的蓝图(例如,使用LLaVA的Ollama,一个像ChromaDB这样的向量数据库,你知道的)。现在,我对现实世界的人类体验非常感兴趣。我在寻找建议、学习故事,以及那些只有在构建类似项目时才能获得的小细节。 对于2025年这样的项目,您会推荐哪些工具、模型和最佳实践?具体来说,我对将结构化元数据(EXIF)、人脸识别数据和语义向量搜索结合成一个统一的应用程序感到好奇。 任何建议都将不胜感激。谢谢!
查看原文
First of all, this is purely a personal learning project for me, aiming to combine three of my passions: photography, software engineering, and my family memories. I have a large collection of family photos and want to build an interactive experience to explore them, ala Google or Apple Photo features.<p>My goal is to create a system with smart search capabilities, and one of the most important requirements is that it must run entirely on my local hardware. Privacy is key, but the main driver is the challenge and joy of building it myself (an obviously learn).<p>The key features I&#x27;m aiming for are:<p>Automatic identification and tagging of family members (local face recognition).<p>Generation of descriptive captions for each photo.<p>Natural language search (e.g., &quot;Show me photos of us at the beach in Luquillo from last summer&quot;).<p>I&#x27;ve already prompted AI tools for a high-level project plan, and they provided a solid blueprint (eg, Ollama with LLaVA, a vector DB like ChromaDB, you know it). Now, I&#x27;m highly interested in the real-world human experience. I&#x27;m looking for advice, learning stories, and the little details that only come from building something similar.<p>What tools, models, and best practices would you recommend for a project like this in 2025? Specifically, I&#x27;m curious about combining structured metadata (EXIF), face recognition data, and semantic vector search into a single, cohesive application.<p>Any and all advice would be deeply appreciated. Thanks!