启动 HN:Risely(YC S25)– 大学的 AI 代理

10作者: danialasif1 天前原帖
嗨,HN,我是Danial,Risely AI的联合创始人兼首席技术官(<a href="https://risely.ai">https://risely.ai</a>)。我们正在构建能够自动化大学内部运营工作流程的人工智能代理。这里有一个演示:<a href="https://www.loom.com/share/d7a14400434144c490249d665a0d0499?sid=8d36736e-6c87-43d3-992d-203c6edb0cf9" rel="nofollow">https://www.loom.com/share/d7a14400434144c490249d665a0d0499?...</a>。 高等教育充满了低效。每个部门都在使用过时的系统,这些系统之间无法互通。如今,顾问工作人员在PeopleSoft或Ellucian中查找招生数据,在Canvas中检查成绩和作业,并尝试在客户关系管理系统(CRM)中跟踪学生参与情况,如果他们有的话。通常,这些工作仅仅依赖于电子表格和电子邮件。一位顾问告诉我们,他们每周仅仅为了回答“哪些学生在挣扎?”这个问题就损失了8个小时以上。在这段时间内,学生们可能会被忽视,而每一个失去的学生都会给学校带来经济损失。 我在过去十年里一直在构建大规模系统,但大约一年前,我辞去了工作,开始构建一些更具个人意义的东西。我在加州大学伯克利分校的经历让我更加坚信我父母在我们移民美国时教给我的道理——教育是向上流动的最强大工具。然而,近40%的学生从未毕业。许多这些学生都是有能力的,只是需要支持,但旨在支持他们的系统却不堪重负,已经崩溃。 因此,我们创建了Risely。我们的第一个代理专注于学术咨询和学生留存。它连接到学校的系统,统一数据,标记有风险的学生,起草联系方案,并回答关于工作负载和课程进度的自然语言问题。它为工作人员提供了杠杆和时间,同时帮助更多学生保持在正轨上。 更困难的部分是后台的所有工作: - 连接到古老的学生信息系统(SIS)、学习管理系统(LMS)和客户关系管理系统(CRM),这些系统的API和数据模型不一致 - 将混乱的机构数据标准化为代理可以推理的格式 - 处理关于FERPA的真实政策约束,隔离租户数据,并满足学生个人身份信息(PII)的严格安全和隐私标准 - 设计可追溯、可审查且在生产环境中安全运行的代理工作流程 - 构建能够适应不同机构规则、流程和特殊情况的基础设施。 我们从学术咨询开始,因为留存直接与收入和学生成功相关。但同样的基础也适用于注册、招生、经济援助、研究管理和其他关键职能。随着更多代理的上线,它们可以开始相互协调,并希望改善整个大学或学院的运营。 如果您曾经构建过需要调和混乱数据、不一致工作流程或政策约束的系统,并使用了大型语言模型(LLM),我们非常希望听到您是如何处理的。 我们期待听到您对上述内容以及该领域其他相关事宜的看法!
查看原文
Hi HN, I’m Danial, co-founder and CTO of Risely AI (<a href="https:&#x2F;&#x2F;risely.ai">https:&#x2F;&#x2F;risely.ai</a>). We&#x27;re building AI agents that automate operational workflows inside universities. Here’s a demo: <a href="https:&#x2F;&#x2F;www.loom.com&#x2F;share&#x2F;d7a14400434144c490249d665a0d0499?sid=8d36736e-6c87-43d3-992d-203c6edb0cf9" rel="nofollow">https:&#x2F;&#x2F;www.loom.com&#x2F;share&#x2F;d7a14400434144c490249d665a0d0499?...</a>.<p>Higher ed is full of inefficiencies. Every department runs on outdated systems that don’t talk to each other. Today, advising staff are looking up enrollment data in PeopleSoft or Ellucian, checking grades and assignments in Canvas, and trying to track engagement in a CRM, if they even have one. Often, it’s just spreadsheets and email. One advisor told us they were losing 8+ hours&#x2F;week just trying to answer: “Which students are struggling?”. During that lag, students slip through the cracks, and every lost student costs a school tuition.<p>I’ve spent the last decade building large-scale systems, but about a year ago, I left my job to build something personal. My time at UC Berkeley reinforced what my parents taught me when we immigrated to the U.S. - that education is the most powerful tool for upward mobility. But nearly 40% of students never graduate. Many of these students are capable and just need support, but the systems meant to support them are overwhelmed and broken.<p>So we built Risely. Our first agent focuses on academic advising and retention. It connects to a school’s systems, unifies the data, flags at-risk students, drafts outreach, and answers natural-language questions about caseloads and course progress. It gives staff leverage and time back, while helping more students stay on track.<p>The harder part is everything under the hood: - Connecting to archaic SIS, LMS, and CRM systems with inconsistent APIs and data models - Normalizing messy institutional data into something agents can reason over - Handling real policy constraints around FERPA, isolating tenant data, and meeting strict security and privacy standards for student PII - Designing agent workflows that are traceable, reviewable, and safe to run in production - Building infrastructure that can adapt to different institutional rules, processes, and edge cases.<p>We started with advising because retention ties directly to both revenue and student success. But the same foundation applies to registrar, admissions, financial aid, research administration, and other critical functions. As more agents come online, they can begin to coordinate with each other and hopefully improve the entire operations of a college or university.<p>If you’ve built systems that had to reconcile messy data, inconsistent workflows, or policy constraints using LLMs, we’d love to hear how you approached it.<p>We’d love to hear your thoughts about the above, and anything in this space!