展示HN:Math2Tex – 将手写数学和复杂笔记转换为LaTeX文本

5作者: leoyixing3 个月前原帖
嗨,HN, 我是 Math2Tex 的创始人。曾经是一名博士生,我花了大量时间使用 LaTeX,特别是在处理讲义、学术论文和作业时。我开发了 *Math2Tex*,这是一款轻量级工具,可以将手写或打印的学术内容——尤其是数学公式——转换为 LaTeX 或纯文本。 问题: 我一直觉得手动输入数学公式非常繁琐,尤其是从我的手写笔记或教科书中提取复杂的多行方程。这不仅慢而且无聊,而且我总是会犯语法错误。我尝试过一些现有工具,但它们往往无法处理我的手写字迹,或者无法处理混合内容(文本和公式一起)。 解决方案: 因此,我开发了 Math2Tex 来解决我自己的问题。这是一个简单的单页网页应用:你上传一张图片(笔记本的照片、PDF 的截图等),它会将学术内容转换为干净的 LaTeX 代码或纯文本。你可以实时预览,并且只需一键即可复制结果。我的目标是让工作流程尽可能快:拍照、转换、完成。 你可以在这里试用:[https://math2tex.com](https://math2tex.com) 它与 GPT、Claude 等通用 AI 工具有什么不同? 这是一个合理的问题。虽然大型模型可以处理这个任务,但对于这样一个特定的任务,它们往往速度较慢。我想要的是更快、更专业的工具。Math2Tex 使用的是一个专门针对学术内容识别进行微调的轻量级模型。 简而言之,可以把它看作是专业的手术刀,而不是瑞士军刀。对于这个特定的工作,它通常快 3-5 倍,并且根据我的经验,对于复杂的符号更可靠。 技术栈: 核心 OCR 引擎是基于变换器架构的定制训练模型,经过大量打印和手写学术材料的数据集微调。所有内容都部署在 Vercel 上。 *它是免费的。* 这仍然是一个早期版本,我相信还有很多错误和改进的空间。识别可能并不完美,尤其是对于非常潦草的手写或一些晦涩的符号。 我非常感激你的反馈。无论你是学生、研究人员,还是曾经与 LaTeX 输入斗争过的人,关于工具和方法的反馈都会非常有帮助。 谢谢!
查看原文
Hi HN,<p>I’m the creator of Math2Tex. I was a PhD student, I spend a huge amount of my time working with LaTeX, especially when dealing with lecture notes, academic papers, and homework. I built *Math2Tex*, a lightweight tool that converts handwritten or printed academic content — especially math formulas — into LaTeX or text<p>The Problem:<p>I&#x27;ve always found it incredibly tedious to manually type out mathematical formulas, especially complex, multi-line equations from my handwritten notes or from a textbook. It&#x27;s slow, boring, and I always make syntax errors. I tried some existing tools, but they often struggled with my handwriting or couldn&#x27;t handle mixed content (text and formulas together).<p>The Solution:<p>So, I built Math2Tex to solve my own problem. It’s a straightforward, single-page web app: you upload an image (a photo of your notebook, a screenshot of a PDF, etc.), and it converts the academic content into clean LaTeX code or plain text. You get a real-time preview and can copy the result with one click. My goal was to make the workflow as fast as possible: Snap. Convert. Done.<p>You can try it here: [<a href="https:&#x2F;&#x2F;math2tex.com" rel="nofollow">https:&#x2F;&#x2F;math2tex.com</a>](<a href="https:&#x2F;&#x2F;math2tex.com&#x2F;" rel="nofollow">https:&#x2F;&#x2F;math2tex.com&#x2F;</a>)<p>How is it different from general AI tools like GPT, Claude, etc?<p>This is a fair question. While large models can handle this, they are often slow for such a specific task. I wanted something faster and more specialized. Math2Tex uses a lightweight model fine-tuned specifically for academic content recognition.<p>In short, think of it as a specialized scalpel versus a Swiss Army knife. For this particular job, it&#x27;s generally 3-5x faster and, in my experience, more reliable for complex notations.<p>Tech Stack:<p>The core OCR engine is a custom-trained model based on a transformer architecture, fine-tuned on a large dataset of both printed and handwritten academic material. It&#x27;s all deployed on Vercel.<p>*It&#x27;s free to use.* This is still an early version, and I&#x27;m sure there are plenty of bugs and areas for improvement. The recognition might not be perfect, especially with very messy handwriting or some obscure symbols.<p>I would be incredibly grateful for your feedback. Whether you’re a student, researcher, or someone who’s fought with LaTeX input. Feedback on both the tool and the approach would be really helpful.<p>Thanks!