一个开源项目,旨在创建人工智能。

3作者: apiemotion大约 2 个月前原帖
自我进化的全可观察AI系统 构建了一个自主AI平台,能够在运行时发现并整合新能力。关键技术点: 事件驱动核心:NATS消息总线处理工具的发现、注册和执行。系统观察自身操作并进行适应。 自我改进循环:AI代理能够创建和部署新工具/代理,以扩展系统能力——“AI构建AI”,无需人工干预。 完全透明:实时可见决策树、推理链和代理间通信(在生产AI系统中较为罕见)。 生产就绪的技术栈:Docker隔离、Redis用于状态管理、K8s编排、REST API。新闻源触发自主目标生成。 有趣之处:与典型的代理框架静态配置不同,该系统通过动态启动专业子代理和工具来学习新领域。新能力的零配置接入。 值得讨论的权衡:事件驱动的复杂性与可调试性、自主进化与漂移/不稳定性、可观察性在大规模下的开销。 欢迎帮助: https://github.com/stevef1uk/artificial_mind.git
查看原文
Self-Evolving AI System with Full Observability Built an autonomous AI platform that can discover and integrate new capabilities at runtime. Key technical points: Event-driven core: NATS message bus handles tool discovery, registration, and execution. System observes its own operations and adapts. Self-improvement loop: AI agents can create and deploy new tools/agents to extend system capabilities—"AI building AI" without human intervention. Full transparency: Real-time visibility into decision trees, reasoning chains, and inter-agent communication (rare in production AI systems). Production-ready stack: Docker isolation, Redis for state, K8s orchestration, REST APIs. News feeds trigger autonomous goal generation. The interesting bit: Unlike typical agent frameworks that are statically configured, this learns new domains by spinning up specialized sub-agents and tools dynamically. Zero-config onboarding of new capabilities. Trade-offs worth discussing: Event-driven complexity vs. debuggability, autonomous evolution vs. drift/instability, observability overhead at scale. Help welcome: https://github.com/stevef1uk/artificial_mind.git