展示HN:我不想将我的私人文件上传到人工智能上

1作者: cando_zhou4 天前原帖
嗨,HN, 在过去的几年里,我一直对一个问题感到着迷:我的硬盘是过去十年知识的宝藏(PDF、文档、笔记),我想利用现代人工智能来真正使用它。 但每个解决方案都迫使我做出取舍:要么方便(将所有内容上传到云端),要么隐私(让我的文件在本地静默存放)。 我厌倦了这种“捏鼻子”的妥协。 随着强大的小型语言模型(SLMs)迅速崛起,以及设备端计算(苹果硅芯片、神经处理单元)终于迎头赶上,我相信隐私和智能不再是一个虚假的选择。 因此,我(和我的团队)构建了 KnowledgeFocus(仅支持苹果硅芯片)。 这是一个开源(Apache-2.0)知识引擎,使用 Tauri(Rust + Python + TS)构建,100% 本地优先。 在 v0.6.4 中,它专注于一件事:解锁你的本地文件“宝藏”。 - 扫描与索引:它扫描你指定的本地文件夹(PDF、.md、.txt、.docx 等)。 - 自动标签:使用本地模型自动为文件打标签,以便你可以聚合和发现它们。 - 本地 RAG:你可以与所有本地文件“聊天”。它在设备上 100% 运行 RAG。没有任何数据(包括向量)会离开你的机器。 网站(下载):[https://github.com/huozhong-in/knowledge-focus](https://github.com/huozhong-in/knowledge-focus) 这只是我们“数据工作台”愿景的第一步。 我还有很多关于“本地优先代理”、“数据聚合”(例如将你的云端 AI 聊天记录拉取到本地存储)以及为知识工作者构建真正的“第二大脑”的想法。 我会在评论区中进一步阐述这些想法和我们的未来路线图。 我期待所有的反馈——尤其是批评意见。谢谢,HN。
查看原文
Hi HN,<p>For the past few years, I&#x27;ve been obsessed with a problem: my hard drive is a treasure chest of knowledge (PDFs, docs, notes) from the last decade, and I want to use modern AI to actually use it.<p>But every solution forces a trade-off: either convenience (upload everything to the cloud) or privacy (let my files sit dormant locally).<p>I got tired of this &quot;hold your nose&quot; compromise.<p>With capable SLMs (Small Language Models) exploding and on-device compute (Apple Silicon, NPUs) finally catching up, I believe privacy and intelligence is no longer a false choice.<p>So I (and my team) built KnowledgeFocus (Apple Silicon chips only)<p>It&#x27;s an open-source (Apache-2.0) knowledge engine built with Tauri (Rust + Python + TS), and it&#x27;s 100% local-first.<p>In v0.6.4, it focuses on one thing: unlocking your local file &#x27;treasure chest&#x27;.<p>- Scans &amp; Indexes: It scans your designated local folders (PDFs, .md, .txt, .docx, etc.).<p>- Auto-tagging: Uses a local model to auto-tag files, so you can aggregate and discover them.<p>- Local RAG: You can &#x27;chat&#x27; with all your local files. It runs RAG 100% on-device. No data (vectors included) ever leaves your machine.<p>Website (Download): <a href="https:&#x2F;&#x2F;github.com&#x2F;huozhong-in&#x2F;knowledge-focus" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;huozhong-in&#x2F;knowledge-focus</a><p>This is just the first step of our &quot;Data Workbench&quot; vision.<p>I have a lot more thoughts on &#x27;local-first agents&#x27;, &#x27;data aggregation&#x27; (like pulling in your cloud AI chat logs to store them locally), and building a real &#x27;second brain&#x27; for knowledge workers.<p>I&#x27;ll be in the comments to expand on these ideas and our future roadmap.<p>I&#x27;m here for all the feedback—especially the critical kind. Thanks, HN.