展示HN:我不想将我的私人文件上传到人工智能上
嗨,HN,
在过去的几年里,我一直对一个问题感到着迷:我的硬盘是过去十年知识的宝藏(PDF、文档、笔记),我想利用现代人工智能来真正使用它。
但每个解决方案都迫使我做出取舍:要么方便(将所有内容上传到云端),要么隐私(让我的文件在本地静默存放)。
我厌倦了这种“捏鼻子”的妥协。
随着强大的小型语言模型(SLMs)迅速崛起,以及设备端计算(苹果硅芯片、神经处理单元)终于迎头赶上,我相信隐私和智能不再是一个虚假的选择。
因此,我(和我的团队)构建了 KnowledgeFocus(仅支持苹果硅芯片)。
这是一个开源(Apache-2.0)知识引擎,使用 Tauri(Rust + Python + TS)构建,100% 本地优先。
在 v0.6.4 中,它专注于一件事:解锁你的本地文件“宝藏”。
- 扫描与索引:它扫描你指定的本地文件夹(PDF、.md、.txt、.docx 等)。
- 自动标签:使用本地模型自动为文件打标签,以便你可以聚合和发现它们。
- 本地 RAG:你可以与所有本地文件“聊天”。它在设备上 100% 运行 RAG。没有任何数据(包括向量)会离开你的机器。
网站(下载):[https://github.com/huozhong-in/knowledge-focus](https://github.com/huozhong-in/knowledge-focus)
这只是我们“数据工作台”愿景的第一步。
我还有很多关于“本地优先代理”、“数据聚合”(例如将你的云端 AI 聊天记录拉取到本地存储)以及为知识工作者构建真正的“第二大脑”的想法。
我会在评论区中进一步阐述这些想法和我们的未来路线图。
我期待所有的反馈——尤其是批评意见。谢谢,HN。
查看原文
Hi HN,<p>For the past few years, I've been obsessed with a problem: my hard drive is a treasure chest of knowledge (PDFs, docs, notes) from the last decade, and I want to use modern AI to actually use it.<p>But every solution forces a trade-off: either convenience (upload everything to the cloud) or privacy (let my files sit dormant locally).<p>I got tired of this "hold your nose" compromise.<p>With capable SLMs (Small Language Models) exploding and on-device compute (Apple Silicon, NPUs) finally catching up, I believe privacy and intelligence is no longer a false choice.<p>So I (and my team) built KnowledgeFocus (Apple Silicon chips only)<p>It's an open-source (Apache-2.0) knowledge engine built with Tauri (Rust + Python + TS), and it's 100% local-first.<p>In v0.6.4, it focuses on one thing: unlocking your local file 'treasure chest'.<p>- Scans & Indexes: It scans your designated local folders (PDFs, .md, .txt, .docx, etc.).<p>- Auto-tagging: Uses a local model to auto-tag files, so you can aggregate and discover them.<p>- Local RAG: You can 'chat' with all your local files. It runs RAG 100% on-device. No data (vectors included) ever leaves your machine.<p>Website (Download): <a href="https://github.com/huozhong-in/knowledge-focus" rel="nofollow">https://github.com/huozhong-in/knowledge-focus</a><p>This is just the first step of our "Data Workbench" vision.<p>I have a lot more thoughts on 'local-first agents', 'data aggregation' (like pulling in your cloud AI chat logs to store them locally), and building a real 'second brain' for knowledge workers.<p>I'll be in the comments to expand on these ideas and our future roadmap.<p>I'm here for all the feedback—especially the critical kind. Thanks, HN.