展示HN:Worqlo – 企业工作流程的对话层

1作者: andrewdany1 天前原帖
大多数企业工作并不是因为数据差而变得缓慢,而是因为访问这些数据的界面分散。<p>像“哪些交易停滞不前?”这样一个简单的问题,涉及到仪表板、电子表格、客户关系管理(CRM)、商业智能(BI)工具、内部脚本以及几个Slack讨论。对答案采取行动需要在系统之间切换,这中间的摩擦就是问题所在。<p>Worqlo是一个通过将对话作为接口层、将确定性工作流作为执行层来消除这种摩擦的实验。<p>这个想法很简单:自然语言输入 → 验证后的工作流输出。<p>大型语言模型(LLM)处理意图,结构化工作流引擎负责执行:CRM查询、字段更新、通知、权限和审计日志。该模型从不直接执行操作。<p>以下是其工作原理。<p>为什么选择对话?<p>人们以问题为思维方式,而系统则以模式为思维方式。仪表板在它们之间起到桥梁作用。<p>接口层面不断增加,因为每个系统都暴露出自己的用户界面。工程师最终会构建内部工具、过滤器、查询、分析页面和一次性自动化。这就是用户界面的“税收”。<p>对话减少了表面复杂度,工作流则增加了安全性和确定性。<p>架构(简化版) 用户 → LLM(意图) → 路由器 → 工作流引擎 → 连接器 → 系统<p>LLM<p>提取意图和参数。 没有执行权限。<p>意图路由器<p>将意图映射到已知的工作流模板。<p>工作流引擎<p>按顺序执行步骤: - 模式验证 - 权限检查 - CRM查询 - API更新 - 通知 - 审计日志<p>连接器<p>针对CRM、ERP、内部API和消息系统的严格适配器。<p>如果以下情况发生,工作流引擎将拒绝运行: - 字段不存在 - 数据类型不匹配 - 权限失败 - 工作流模板与用户意图不匹配<p>这可以防止常见的LLM失败案例:虚构字段、不正确的API调用、不安全的操作等。<p>示例查询<p>用户: “给我看看本周DACH的销售管道”<p>内部流程: 意图 = llm.parse(“管道查询”) 验证(意图) 获取(数据) 汇总(统计) 返回(摘要)<p>后续: “将汉莎航空的交易重新分配给朱莉,并提醒亚历克斯跟进”<p>工作流: 按名称查找交易 验证所有权变更 写入CRM更新 发送Slack通知 写入审计日志<p>所有操作都通过确定性的步骤进行。<p>为什么从销售开始?<p>销售CRM结构化且可预测。 工作流重复(重新分配、提醒、跟进)。 延迟很重要。 输出是可测量的。 这使得该领域成为对话工作流的良好测试环境。<p>长期的想法并不局限于销售。 相同的模式适用于运营、财务、市场营销和人力资源。<p>为什么不直接使用“ChatGPT + API”?<p>因为那样会导致速度变慢。<p>LLM并不是可靠的执行引擎。 它们会虚构字段名称、ID、端点和逻辑。 企业系统需要安全、可审计的操作。<p>Worqlo将LLM视为解析器,而不是工作者。<p>执行在一个受控环境中进行,包含: - 工作流模板 - 模式合同 - 基于角色的访问控制(RBAC) - 日志 - 可重复的结果<p>这保持了自然语言的便利性和经典自动化引擎的可靠性。<p>我们正在测试什么<p>我们想看看: - 对话是否可以替代用户界面,处理狭窄、结构化的任务 - 确定性执行是否可以与自然语言意图共存 - 多轮工作流是否真的可以减少操作负担 - 连接器模型是否可以扩展而不产生另一个集成混乱 - 工程师是否更喜欢通过工作流而不是用户界面层来暴露功能<p>现在还为时已早。 但该模型在高容量、低级别的操作工作中似乎很有前景。
查看原文
Most enterprise work isn’t slow because of bad data. It’s slow because the interface to that data is scattered.<p>A single question like “Which deals are stalled?” touches dashboards, spreadsheets, a CRM, BI tools, internal scripts, and a few Slack threads. Acting on the answer requires switching between systems again. The friction is in the middle.<p>Worqlo is an experiment in removing that friction by using conversation as the interface layer and deterministic workflows as the execution layer.<p>The idea is simple: natural language in → validated workflow out.<p>The LLM handles intent. A structured workflow engine handles execution: CRM queries, field updates, notifications, permissions, and audit logging. The model never executes actions directly.<p>Below is how it works.<p>Why Conversation?<p>People think in questions. Systems think in schemas. Dashboards sit between them.<p>Interfaces multiply because every system exposes its own UI. Engineers end up building internal tools, filters, queries, analytics pages, and one-off automations. That’s the UI tax.<p>Conversation removes the surface area. Workflows add safety and determinism.<p>Architecture (simplified) User → LLM (intent) → Router → Workflow Engine → Connectors → Systems<p>LLM<p>Extracts intent and parameters. No execution privileges.<p>Intent Router<p>Maps intent to a known workflow template.<p>Workflow Engine<p>Executes steps in order:<p>schema validation<p>permission checks<p>CRM queries<p>API updates<p>notifications<p>audit logs<p>Connectors<p>Strict adapters for CRMs, ERPs, internal APIs, and messaging systems.<p>The workflow engine will refuse to run if:<p>fields don’t exist<p>data types mismatch<p>permissions fail<p>workflow template doesn’t match user intent<p>This prevents the usual LLM failure cases: hallucinated fields, incorrect API calls, unsafe actions, etc.<p>Example Query<p>User:<p>&quot;Show me this week&#x27;s pipeline for DACH&quot;<p>Internal flow:<p>intent = llm.parse(&quot;pipeline query&quot;) validate(intent) fetch(data) aggregate(stats) return(summary)<p>Follow-up:<p>&quot;Reassign the Lufthansa deal to Julia and remind Alex to follow up&quot;<p>Workflow:<p>find deal by name validate ownership change write CRM update send Slack notification write audit log<p>Everything runs through deterministic steps.<p>Why Start With Sales<p>Sales CRMs are structured and predictable. Workflows repeat (reassign, nudge, follow-up). Latency matters. Output is measurable. It makes the domain a good test environment for conversational workflows.<p>The long-term idea is not sales-specific. The same pattern applies to operations, finance, marketing, and HR.<p>Why Not Just Use “ChatGPT + API”?<p>Because that breaks fast.<p>LLMs are not reliable execution engines. They hallucinate field names, IDs, endpoints, and logic. Enterprise systems require safe, auditable actions.<p>Worqlo treats the LLM as a parser, not a worker.<p>Execution lives in a controlled environment with:<p>workflow templates<p>schema contracts<p>RBAC<p>logs<p>repeatable results<p>This keeps the convenience of natural language and the reliability of a classic automation engine.<p>What We’re Testing<p>We want to see whether:<p>conversation can replace UI for narrow, structured tasks<p>deterministic execution can coexist with natural language intent<p>multi-turn workflows can actually reduce operational load<p>a connector model can scale without creating another integration mess<p>engineers prefer exposing functionality through workflows instead of UI layers<p>It’s still early. But the model seems promising for high-volume, low-level operational work.