Semantica – 开源语义层和GraphRAG框架
嗨,HN,
我想分享一下Semantica,这是一个获得麻省理工学院许可的开源框架,用于构建语义层和知识工程系统,以支持人工智能。
许多RAG(检索增强生成)和代理系统的失败并非由于模型质量,而是由于语义鸿沟——即缺乏明确实体、规则或关系的非结构化、不一致的数据。仅依赖向量的方法在处理真实世界数据时,往往会出现幻觉或默默失败。
Semantica专注于将杂乱的数据转化为适合推理的语义知识。
核心功能:
- 通用数据摄取(PDF、DOCX、HTML、JSON、CSV、数据库、API)
- 自动实体和关系提取
- 知识图谱构建与实体解析
- 自动本体生成与验证
- GraphRAG(混合向量 + 图检索,多跳推理)
- 持久的语义记忆用于AI代理
- 冲突检测、去重和来源追踪
项目链接:
文档:https://hawksight-ai.github.io/semantica/
GitHub:https://github.com/Hawksight-AI/semantica
我非常希望能收到从事知识图谱、GraphRAG、代理记忆或生产RAG可靠性方面的人的反馈。
欢迎讨论设计权衡或回答技术问题。
查看原文
Hi HN,<p>I’m sharing Semantica, an MIT-licensed open-source framework for building semantic layers and knowledge engineering systems for AI.<p>Many RAG and agent systems fail not due to model quality, but due to the semantic gap — unstructured, inconsistent data without explicit entities, rules, or relationships. Vector-only approaches often hallucinate or fail silently under real-world data.<p>Semantica focuses on transforming messy data into reasoning-ready semantic knowledge.<p>Core capabilities:
- Universal ingestion (PDF, DOCX, HTML, JSON, CSV, databases, APIs)
- Automated entity and relationship extraction
- Knowledge graph construction with entity resolution
- Automated ontology generation and validation
- GraphRAG (hybrid vector + graph retrieval, multi-hop reasoning)
- Persistent semantic memory for AI agents
- Conflict detection, deduplication, and provenance tracking<p>Project links:
Docs: https://hawksight-ai.github.io/semantica/
GitHub: https://github.com/Hawksight-AI/semantica<p>I’d appreciate feedback from people working on knowledge graphs, GraphRAG, agent memory, or production RAG reliability.<p>Happy to discuss design trade-offs or answer technical questions.