Semantica – 开源语义层和GraphRAG框架

5作者: kaifahmad1大约 10 小时前原帖
嗨,HN, 我想分享一下Semantica,这是一个获得麻省理工学院许可的开源框架,用于构建语义层和知识工程系统,以支持人工智能。 许多RAG(检索增强生成)和代理系统的失败并非由于模型质量,而是由于语义鸿沟——即缺乏明确实体、规则或关系的非结构化、不一致的数据。仅依赖向量的方法在处理真实世界数据时,往往会出现幻觉或默默失败。 Semantica专注于将杂乱的数据转化为适合推理的语义知识。 核心功能: - 通用数据摄取(PDF、DOCX、HTML、JSON、CSV、数据库、API) - 自动实体和关系提取 - 知识图谱构建与实体解析 - 自动本体生成与验证 - GraphRAG(混合向量 + 图检索,多跳推理) - 持久的语义记忆用于AI代理 - 冲突检测、去重和来源追踪 项目链接: 文档:https://hawksight-ai.github.io/semantica/ GitHub:https://github.com/Hawksight-AI/semantica 我非常希望能收到从事知识图谱、GraphRAG、代理记忆或生产RAG可靠性方面的人的反馈。 欢迎讨论设计权衡或回答技术问题。
查看原文
Hi HN,<p>I’m sharing Semantica, an MIT-licensed open-source framework for building semantic layers and knowledge engineering systems for AI.<p>Many RAG and agent systems fail not due to model quality, but due to the semantic gap — unstructured, inconsistent data without explicit entities, rules, or relationships. Vector-only approaches often hallucinate or fail silently under real-world data.<p>Semantica focuses on transforming messy data into reasoning-ready semantic knowledge.<p>Core capabilities: - Universal ingestion (PDF, DOCX, HTML, JSON, CSV, databases, APIs) - Automated entity and relationship extraction - Knowledge graph construction with entity resolution - Automated ontology generation and validation - GraphRAG (hybrid vector + graph retrieval, multi-hop reasoning) - Persistent semantic memory for AI agents - Conflict detection, deduplication, and provenance tracking<p>Project links: Docs: https:&#x2F;&#x2F;hawksight-ai.github.io&#x2F;semantica&#x2F; GitHub: https:&#x2F;&#x2F;github.com&#x2F;Hawksight-AI&#x2F;semantica<p>I’d appreciate feedback from people working on knowledge graphs, GraphRAG, agent memory, or production RAG reliability.<p>Happy to discuss design trade-offs or answer technical questions.