问HN:我们能否用实际的Git问题来替代职位描述?

1作者: A1aM019 天前原帖
你好,HN, 我正在探索一个概念,以解决“职位描述”和“实际工作”之间的脱节问题。 问题: 公司通常以特定的意图进行招聘(例如,“我们需要一个人来解决我们的遗留支付同步问题”),但当这些信息传达到职位描述时,往往变成了一堆泛泛而谈的关键词:“必须拥有5年以上的Java、微服务经验……” 假设: 招聘是为了解决问题。那么,为什么不直接用问题本身作为职位描述呢? 提议的工作流程: 输入 = 问题背景(公开或私有): 招聘经理不再编写职位描述,而是从他们的问题跟踪系统(如GitHub、Jira等)中选择一组实际任务/问题。 示例(开源):“这是问题#123(内存泄漏)。帮我找一个解决过类似复杂问题的人。” 示例(企业):“这是一个关于高并发数据库锁定的已解决任务。我们需要另一个能够处理这种工作水平的人。” 愿景:这可以通过API或MCP(模型上下文协议)服务器来实现,安全地获取任务背景——代码差异、讨论和复杂性指标。 匹配: 我们将这个“问题向量”与候选人的“活动向量”(从他们的git日志或贡献历史中得出)进行比较。 结果:“候选人X的匹配度为90%,因为他们最近在Rust中重构了一个类似的异步队列系统,这与您输入的问题的复杂性相符。” 隐私挑战(房间里的大象): 为了在企业(私有仓库)中实现这一点,隐私至关重要。 我在考虑一个本地提取层,在将“问题背景”发送到大型语言模型进行分析之前,先对其进行清理(去除个人身份信息/机密信息)。目标是提取问题的模式,而不是专有代码本身。 我的问题: 我首先在公共GitHub用例上构建原型。 但对于那些在企业中招聘的人:您是否会信任一个解析您内部问题背景(经过清理)的工具,以生成精确的候选人要求档案? 我相信这种“基于任务的招聘”比“简历解析”更公平,但我很好奇您认为这个模型在哪些方面会出现问题。
查看原文
Hello HN,<p>I&#x27;m exploring a concept to fix the disconnect between &quot;Job Descriptions&quot; and &quot;Actual Work.&quot;<p>The Problem: Companies usually hire with a specific intent (e.g., &quot;We need someone to fix our legacy payment sync issues&quot;), but by the time this reaches the JD, it becomes a generic soup of keywords: &quot;Must have 5+ years Java, Microservices...&quot;<p>The Hypothesis: Hiring is about solving problems. So why don&#x27;t we use the problem itself as the JD?<p>The Proposed Workflow:<p>Input = The Problem Context (Public or Private): Instead of writing a JD, the hiring manager selects a set of actual tasks&#x2F;issues from their issue tracker (GitHub, Jira, etc.).<p>Example (Open Source): &quot;Here is Issue #123 (Memory Leak). Find me someone who has solved similar complexity.&quot; Example (Enterprise): &quot;Here is a resolved task regarding high-concurrency database locking. We need another person who can handle this level of work.&quot; Vision: This could be done via an API or MCP (Model Context Protocol) server that securely fetches the task context—code diffs, discussions, and complexity metrics. The Match: We compare this &quot;Problem Vector&quot; against a candidate&#x27;s &quot;Activity Vector&quot; (derived from their git log or contribution history).<p>Result: &quot;Candidate X is a 90% match because they recently refactored a similar async queue system in Rust, which aligns with the complexity of your input issue.&quot; The Privacy Challenge (The Elephant in the Room): For this to work in Enterprise (Private Repos), privacy is paramount.<p>I&#x27;m thinking about a localized extraction layer where the &quot;Problem Context&quot; is sanitized (removing PII&#x2F;secrets) before it&#x27;s ever sent to an LLM for analysis. The goal is to extract the pattern of the problem, not the proprietary code itself. My Question: I&#x27;m building a prototype for the public GitHub use case first. But for those of you hiring in enterprise: Would you trust a tool that parses your internal issue context (sanitized) to generate a precise candidate requirement profile?<p>I believe this &quot;Task-based Hiring&quot; is fairer than &quot;Resume Parsing,&quot; but I&#x27;m curious where you think this model breaks down.