4作者: scottfalconer7 个月前原帖
(注意:我不会链接到最终的书籍。此帖子仅关注与大型写作项目中与大型语言模型(LLM)的合作过程和实际经验教训。) 大家好, 我最近完成了一个为期数月的项目,密切与多种大型语言模型(如ChatGPT、Claude、Gemini)合作,撰写一本关于在管理中使用人工智能的书。这一过程变成了一次元实验,揭示了值得分享的实际工作流程和陷阱。 这篇文章将详细介绍我的工作流程、一些独特之处和所学到的经验教训。 ### 开始阶段: 我使用ChatGPT作为杂乱笔记的试金石。一天早上,我在交通堵塞中尝试直接在聊天应用中进行语音输入。原本预期会很混乱,结果得到了可用(虽然有些啰嗦)的文本。 **经验教训1:立即捕捉原始想法。使用语音或文本记录灵感,然后进行完善。这对于克服空白页非常关键。** ### 我的工作流程自然演变: - **对话式头脑风暴**:与AI“谈论”想法。请求类比、反驳、结构等。把它当作一个随时可用(但有些奇怪)的伙伴。 - **合作草拟**:在遇到瓶颈时,让AI生成初稿(“为Y简单解释X”),但将其视为需要大量人工编辑和事实核查的原材料。或者,先自己写,再让AI润色。通常是交替进行。 - **迭代精炼**:核心循环。粘贴草稿 > 请求具体反馈(“这个逻辑清晰吗?”) > 有选择地整合 > 重复。(**经验教训2:模糊的提示=模糊的结果;提供具体的指示。通常需要将任务分解:先逻辑,再风格。**) - **安全的上下文管理**:LLM会遗忘(上下文窗口)。(**经验教训3:你是AI的外部记忆。不断重新粘贴上下文/风格指南;使用系统提示。假设时间上没有持久性。**) - **朗读审查**:使用文本转语音或大声朗读草稿。(**经验教训4:耳朵能捕捉到眼睛遗漏的尴尬之处。这对自然流畅性至关重要。**) ### “AI A-Team”: 不同模型有不同的优势: - **ChatGPT**:创造性“文科型”;擅长类比/散文,但冗长/容易恭维。 - **Claude**:分析性“工程师”;在逻辑/准确性/代码方面表现出色,但可能不适合一起喝酒。 - **Gemini**: “校对员”;擅长大范围的一致性。能够进行建设性的反驳。 (**经验教训5和6:使用合适的工具;通过实验了解各自的优势,并利用模型相互检查。它们之间的输出交互常常揭示缺陷——Gemini指出ChatGPT的不足是很有帮助的。**) ### 我做得不够好的地方: 最大的障碍: - **AI的恭维是真实的**:优化帮助意味着对糟糕工作的赞美。(**经验教训7:请求批判性反馈。‘严厉批评’。不要相信赞美;人工审查至关重要。**) - **“AI声音”是普遍存在的**:理解为什么听起来像机器人(训练偏差,RLHF)。(**经验教训8:抵制AI化。请求特定的语调;编辑掉填充词/模棱两可/重复/‘深入探讨’;除非正式场合,否则不要使用破折号。**) - **验证负担巨大**:AI会产生幻觉/错误的事实。(**经验教训9:在没有验证的情况下假设没有任何正确。你是事实核查员。尽管工作量很大,但这是不可妥协的。要为主张提供依据;对细微差别/亲身经历要小心。**) - **完美主义是陷阱**:AI使得无尽的迭代成为可能。(**经验教训10:设定限制;相信判断。知道‘足够好’。不要让AI侵蚀你的声音。放弃你的宠儿。**) ### 我在这个混乱中的个人角色: 深入的AI合作将人类角色提升为:管理者(目标/背景)、仲裁者(评估冲突)、整合者(综合)、质量控制(验证/伦理)和声音(注入个性/细微差别)。 ### 结论: 这不是一键式的魔法;这是一个需要不断人类指导、判断和努力的密集、迭代的合作过程。它显著加速了进程并激发了创意,但最终的质量完全依赖于积极的人类管理。 ### 关键要点: 接受混乱。快速捕捉。努力迭代。了解你的工具。验证一切。永远不要放弃你作为掌控者的角色。 期待听到其他人的经验分享。
1作者: lummm7 个月前原帖
我已经在开发用于“理解”软件代码的工具好几年了。到目前为止,我还没有找到比知识图谱更好的方式来建模实际概念。为此,我在这里向您介绍一个工具,它可以自动构建代码库的知识图谱,这可以作为各种下游工具的基础。只需将其指向代码库,提供您的 OpenAI API 密钥,然后让它开始工作。较大的代码库(超过 1000 个文件)处理起来会花费一些时间——保守估计为每分钟 12 个文件。